Multi-perspective Data Modelling in Cyber Physical Production Networks: Data, Services and Actors
نویسندگان
چکیده
Abstract In recent years, Cyber Physical Production Systems and Digital Threads opened the vision on importance of data modelling management to lead smart factory towards a full-fledged vertical horizontal integration. Vertical integration refers full connection levels from work centers shop floor up business layer. Horizontal is realised when single participates in multiple interleaved supply chains with different roles (e.g., main producer, supplier), sharing services forming Network. such an interconnected world, become fundamental elements cyberspace implement advanced data-driven applications as production scheduling, energy consumption optimisation, anomaly detection, predictive maintenance, change Product Lifecycle Management, process monitoring so forth. this paper, we propose methodology that guides design portfolio data-oriented The starts goals actors network, well their requirements functions. Therefore, model designed represent information shared across according three perspectives, namely, product, industrial assets. Finally, multi-perspective for collecting, monitoring, dispatching displaying are built top model, perspectives. also includes set access policies order enable controlled services. tested real case study valves deep ultra-deep water applications. Experimental validation demonstrates benefits providing methodological support Networks, both terms usability navigation through service performances presence Big Data.
منابع مشابه
the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance
با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...
pattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولMPM4CPS: Multi-Paradigm Modelling for Cyber-Physical Systems
The last decades have seen the emergence of truly complex, designed systems, known as Cyber-Physical Systems (CPS). Engineering such systems requires integrating physical, software, and network aspects. To date, neither a unifying theory nor systematic design methods, techniques and tools exist to meet this challenge. Individual engineering disciplines, such as mechanical, electrical, network a...
متن کاملData Analysis Methods in Social Networks
Background and Aim. The promising outlook of easy communication incurring minimum cost has caused social networks to face increasing number of active members each day. These members develop and expand international communication through information sharing including personal information. Thus, big data analysis of social networks provides companies, organizations and governments with ample and ...
متن کاملdata mining rules and classification methods in insurance: the case of collision insurance
assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Data Science and Engineering
سال: 2022
ISSN: ['2364-1541', '2364-1185']
DOI: https://doi.org/10.1007/s41019-022-00194-4